Solution to Problem 14) Wallis’s product formula may be rearranged, as follows:

(2m)! (2m)n
em-1)!' m+1)!

[(2m)n]*
2m)! x 2m+1)!

24Mm(m1#

2m+D) x [Cm)]?

A . . .
5= lim,, 00 = lim,;, 00 = lim,;, 00
In the limit when m — oo, substitution of Stirling’s asymptotic formula for m! and

(2m)! in the above equation yields
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Digression: Strictly speaking, one needs to demonstrate that n!/[vn(n/e)™] approaches
a limit when n — oo, before one can assign a constant ¢ to this limit. Given that Stirling’s
approximation has already established an upper bound, e, and a lower bound, e”/8, for
the ratio n!/[vn(n/e)™], it suffices to verify that the sequence is either monotonically
increasing or monotonically decreasing as n — oo. Recalling that the logarithmic function

is monotonic, we examine the sequence @,, = ln{n! /[Vn(n/ e)"]} for its monotonicity.
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Clearly, a,+1 — @, < 0, which indicates that the sequence is monotonically decreasing.




